Abstract

Water is a resource that is essential to almost all phases of industrial and manufacturing operations globally. It is important to handle the wastewater generated professionally. The textile industry is one of the major global polluters, with textile producers responsible for one-fifth of all industrial water pollution worldwide. In contrast, heavy metal contamination has developed into a critical, expanding global environmental problem. Geopolymer is a cementitious constituent of amorphous aluminosilicates derived from natural or industrial wastes. It is produced using the polymerization of aluminosilicate raw ingredients in an alkaline atmosphere. The aim of this study is to evaluate the application of eco-friendly geopolymer cement in the immobilization technique for the treatment of wastewater including heavy metals and dyes. Geopolymer cement pastes were organized using slag and fly ash as an aluminosilicate source, (1:1) sodium silicate and sodium hydroxide 15 wt.% as an alkali activator in the presence of organic dye pollutant reactive red 195, and Cu2+ ions (700 ppm) at different hydration times for up to 28 days. The physicochemical and mechanical properties of the prepared geopolymer cement mixes were further examined in relation to reactive dye pollutant and Cu2+ ions. The hydration characteristic was examined using the compressive strength and % of total porosity tests, as well as FTIR and XRD studies. Our findings support the 100% immobilization of both Cu2+ ions and organic dye pollutants in prepared geopolymer pastes for up to 28 days of hydration. Additionally, adding both Cu2+ ions and dye pollutants to the prepared geopolymer paste improves its mechanical properties, which is also supported by FTIR data. XRD and FTIR studies showed that the Cu2+ ions and dying bath effluent addition have no influence on the kind of hydration products that are produced. On the other hand, the geopolymerization process is negatively impacted by the presence of Cu2+ ions alone in the geopolymer paste.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call