Abstract

The SnO 2–Bi 2O 3 based thick-film polycrystalline material is fabricated on alumina substrate via screen-printing technique. This material system is evaluated at various temperatures (35 °C ≤T≤100 °C) using ac small-signal (immittance) measurements in the frequency range 10 Hz ≤f≤10 6 Hz. The simplistic analytical scenario for the immittance data employed the Cole–Cole empirical equation in conjunction with the estimation of the inspected input parameters. This is an alternate approach compared to the complex nonlinear least squares (CNLS) fitting procedure, and purely based on the appearance of the semicircular relaxation in the complex plane. It is found that the constituting components of the semicircular relaxation in the impedance plane are thermally activated indicating complexity in the grain boundary contributions despite the Debye and non-Debye relaxation responses. The possible degree of uniformity or non-uniformity in the grain boundary activity associated with its capacitance term observed via the Debye or non-Debye semicircular relaxation in the impedance (Z⁎) plane has been postulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.