Abstract

The stability of the quasi-two-dimensional droplet flow is of great importance in microfluidic devices. We check the drop’s stability in the square box using the immersed boundary and lattice Boltzmann methods. We implement two-dimensional equations within the immersed boundary approach in the Palabos programming platform. We check the influence of the boundaries on the drop movement. We estimate fluctuations in the quantities while applying different initial conditions of the linear and angular velocities. We found that the level of fluctuations depends on the symmetrical displacement of drop at the initial state. The effect is connected with the hydrodynamic interaction of drop with the walls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.