Abstract

Recent studies on ankle exoskeletons have shown the feasibility of this technology for post-stroke gait rehabilitation. The main contribution of the present work is a comprehensive experimental analysis and protocol that focused on evaluating a wide range of biomechanical, usability and users’ perception metrics under three different walking conditions: without exoskeleton, with an ankle exoskeleton unpowered, and with an ankle exoskeleton powered. To carry out this study, we developed the ABLE-S exoskeleton that can provide time-adapted ankle plantarflexion and dorsiflexion assistance. Tests with five participants with chronic stroke showed that walking with the ABLE-S exoskeleton significantly corrected foot drop by 25 % while reducing hip compensatory movements by 21 %. Furthermore, asymmetrical spatial gait patterns were significantly reduced by 51 % together with a significant increase in the average foot tilting angle at heel strike by 349 %. The total time to don, doff and set-up the device was of 7.86 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\pm$</tex-math></inline-formula> 2.90 minutes. Finally, 80 % of the participants indicated that they were satisfied with their walking performance while wearing the exoskeleton, and 60 % would use the device for community ambulation. The results of this study add to the existing body of evidence supporting that ankle exoskeletons can improve gait biomechanics for post-stroke individuals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call