Abstract
Adaptation of rubber tree clones to water-limited areas and maintenance of trunk radial growth are important keys for performance of genetic material. The rubber farmers need to shorten the interim phases to produce latex, which is considered “immature” phase, i.e. the time without income. The objective of this study was to compare the performance of three important rubber tree clones: GT1, the elder clone as control, which is still widely used in Cambodia and West Africa; RRIM600, the “all-round” clone, the most planted clone in Thailand, the first world producer; and RRIT251, the expanding clone, recommended by the Rubber Authority of Thailand, all in the field condition. The investigation was conducted in a drought-prone area of Northeast Thailand, where the dry season lasts 5 to 6 months. The cumulated growth and the annual growth were analyzed 4.5 years after planting. The trunk girth and height were measured monthly. Main climatic variables were hourly recorded. The year was separated in three periods: the leaves-shed season from January to April, the wet season from May to September, and the dry season with canopy maintenance from October to December. The results showed significant clonal effect on both trunk girth and height; however, with relatively low differences. The trunk girth of clone RRIT251 was about 29 cm and 10% higher than GT1. The difference was not significant in RRIM600. The annual girth increment was mainly located in wet season (63%) without clonal effect. The clonal difference was occurred in the dry season, where RRIT251 was better performed particularly in the leave-shed period preceding wet season. On a monthly basis, the relative trunk girth increment rate was highly negatively related to the vapor pressure deficit. We hypothesized that rubber clones shared a common strategy of dehydration avoidance, while RRIT251 expressed a little less degree of avoidance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.