Abstract

The structural protein Core of hepatitis C virus (HCV), a cytosolic protein, induces endoplasmic reticulum (ER) stress and unfolded protein response (UPR) in hepatocytes, and is responsible for the pathogenesis of persistent HCV infection. Using yeast as a model system, we evaluated mechanisms underlying Core-induced interference of ER homeostasis and UPR, and found that UPR is induced by the immature Core (aa 1-191, Core191) but not by the mature Core (aa 1-177, Core177). Interestingly, Core191 inhibits both ERAD-L, a degradation system responsible for misfolded/unfolded proteins in the ER lumen, and ERAD-M, a degradation system responsible for proteins carrying a misfolded/unfolded region in the ER membrane. In contrast, Core177 inhibits ERAD-M but not ERAD-L. In addition, requirement of an unfolded protein sensor in the ER lumen suggested that inhibition of ERAD-L is probably responsible for Core191-dependent UPR activation. These results implicate inadequate maturation of Core as a trigger for induction of ER stress and UPR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call