Abstract
Although the use of the tyrosine kinase inhibitors (TKIs) has been proved that it can save live in a cancer treatment, the currently used drugs bring in many undesirable side-effects. Therefore, the search for new drugs and an evaluation of their efficiency are intensively carried out. Recently, a series of eighteen imidazole[1,5-a]pyridine derivatives were synthetized by us, and preliminary analyses pointed out their potential to be an important platform for pharmaceutical development owing to their promising actions as anticancer agents and enzyme (kinase, HIV-protease,…) inhibitors. In the present theoretical study, we further analyzed their efficiency in using a realistic scenario of computational drug design. Our protocol has been developed to not only observe the atomistic interaction between the EGFR protein and our 18 novel compounds using both umbrella sampling and steered molecular dynamics simulations, but also determine their absolute binding free energies. Calculated properties of the 18 novel compounds were in detail compared with those of two known drugs, erlotinib and osimertinib, currently used in cancer treatment. Inspiringly the simulation results promote three imidazole[1,5-a]pyridine derivatives as promising inhibitors into a further step of clinical trials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.