Abstract

Recently a semiempirical method has been proposed by Aqvist et al. to calculate absolute and relative binding free energies. In this method, the absolute binding free energy of a ligand is estimated as deltaGbind = alpha<Vel(bound) - Vel(free)> + beta<Vvdw(bound) - Vvdw(free)>, where Vel(bound) and Vvdw(bound) are the electrostatic and van der Waals interaction energies between the ligand and the solvated protein from an molecular dynamics (MD) trajectory with ligand bound to protein and Vel(free) and Vel(free) and Vvdw(free) are the electrostatic and van der Waals interaction energies between the ligand and the water from an MD trajectory with the ligand in water. A set of values, alpha = 0.5 and beta = 0.16, was found to give results in good agreement with experimental data. Later, however, different optimal values of beta were found in studies of compounds binding to P450cam and avidin. The present work investigates how the optimal value of beta depends on the nature of binding sites for different protein-ligand interactions. By examining seven ligands interacting with five proteins, we have discovered a linear correlation between the value of beta and the weighted non-polar desolvation ratio (WNDR), with a correlation coefficient of 0.96. We have also examined the ability of this correlation to predict optimal values of beta for different ligands binding to a single protein. We studied twelve neutral compounds bound to avidin. In this case, the WNDR approach gave a better estimate of the absolute binding free energies than results obtained using the fixed value of beta found for biotin-avidin. In terms of reproducing the relative binding free energy to biotin, the fixed-beta value gave better results for compounds similar to biotin, but for compounds less similar to biotin, the WNDR approach led to better relative binding free energies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call