Abstract

Neonicotinoid insecticides (e.g., imidacloprid) are some of the most prevalent tools used to control hemipterans that attack soybean crops worldwide. However, the emergence of neonicotinoid-resistant strains of phytosuccivorous soybean pests, such as the Neotropical brown stink bug Euschistus heros, has posed a challenge to the sustainable use of these compounds. Here, we laboratory-selected two E. heros strains for imidacloprid resistance and evaluated the activity of detoxification enzymes (e.g., cytochrome P450, esterases and glutathione-S-transferases) as well as potential adaptive costs associated with resistance (e.g., in survival, fecundity and fertility) in both strains, while laboratory selection for 13 generations in a known imidacloprid-susceptible E. heros strain (ImiSusc) resulted in an imidacloprid-resistant strain (ImiLabSel) with a resistance ratio (RR) of 11.6; similar resistance levels (i.e., RR = 13.5) were also achieved in another imidacloprid-resistant strain, which was field-collected (ImiGoias) and laboratory-selected for only six generations (ImiRes). Regarding enzymatic activity, both resistant strains differed from the imidacloprid-susceptible strain only in the activity of cytochrome P450, where the ImiLabSel and ImiRes strains exhibited higher activity by 72.3% and 40.5%, respectively. Furthermore, severe fitness costs (reductions of 86% for ImiLabSel and 68.0% for ImiRes) were recorded in both imidacloprid-resistant strains. Collectively, our results showed that E. heros rapidly responded to laboratory selection for neonicotinoid resistance, with enhanced cytochrome P450 activity as the likely underlying mechanism, and that they exhibit associated fitness costs, which have direct implications for the management of this insect pest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call