Abstract

AbstractDuring sudden solar wind dynamic pressure enhancements, the magnetosphere undergoes rapid compression resulting in a reconfiguration of the global current systems, most notably the field‐aligned currents (FACs). Ground‐based magnetometers are traditionally used to study such compression events. However, factors affecting the polarity and magnitude of the ground‐based magnetic perturbations are still not well understood. In particular, interplanetary magnetic field (IMF) By is known to create significant asymmetries in the FAC patterns. We use the University of Michigan Block Adaptive Tree Roe Upwind Scheme (BATS'R'US) magnetohydrodynamic code to investigate the effects of IMF By on the global variations of ground magnetic perturbations during solar wind dynamic pressure enhancements. Using virtual magnetometers in three idealized simulations with varying IMF By, we find asymmetries in the peak amplitude and magnetic local time of the ground magnetic perturbations during the preliminary impulse (PI) and the main impulse (MI) phases. These asymmetries are especially evident at high‐latitude ground magnetometer responses where the peak amplitudes differ by 50 nT at different locations. We show that the FACs related with the PI are due to magnetopause deformation, and the FACs related with the MI are generated by vortical flows within the magnetosphere, consistent with other simulation results. The perturbation FACs due to pressure enhancements and their magnetospheric sources do not differ much under different IMF By polarities. However, the conductance profile affected by the superposition of the preexisting FACs and the perturbation FACs including their closure currents is responsible for the magnitude and location asymmetries in the ground magnetic perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.