Abstract

Satellite-based precipitation products (SPPs) are essential for climate monitoring, especially in regions with sparse observational data. This study compares the performance of the latest version (V07B) and its predecessor (V06B) of the Integrated Multi-satellitE Retrievals for GPM (IMERG) across South America and the adjacent oceans. It focuses on evaluating their accuracy under different precipitation regimes in Brazil using 22 years of IMERG Final data (2000–2021), aggregated into seasonal totals (summer, autumn, winter, and spring). The observations used for the evaluation were organized into 0.1° × 0.1° grid points to match IMERG’s spatial resolution. The analysis was restricted to grid points containing at least one rain gauge, and in cases where multiple gauges were present within a grid point the average value was used. The evaluation metrics included the Root Mean Square Error (RMSE) and categorical indices. The results reveal that while both versions effectively capture major precipitation systems such as the mesoscale convective system (MCS), South Atlantic Convergence Zone (SACZ), and Intertropical Convergence Zone (ITCZ), significant discrepancies emerge in high-rainfall areas, particularly over oceans and tropical zones. Over the continent, however, these discrepancies are reduced due to the correction of observations in the final version of IMERG. A comprehensive analysis of the RMSE across Brazil, both as a whole and within the five analyzed regions, without differentiating precipitation classes, demonstrates that version V07B effectively reduces errors compared to version V06B. The analysis of statistical indices across Brazil’s five regions highlights distinct performance patterns between IMERG versions V06B and V07B, driven by regional and seasonal precipitation characteristics. V07B demonstrates a superior performance, particularly in regions with intense rainfall (R1, R2, and R5), showing a reduced RMSE and improved categorical indices. These advancements are linked to V07B’s reduced overestimation in cold-top cloud regions, although both versions consistently overestimate at rain/no-rain thresholds and for light rainfall. However, in regions prone to underestimation, such as the interior of the Northeastern region (R3) during winter, and the northeastern coast (R4) during winter and spring, V07B exacerbates these issues, highlighting challenges in accurately estimating precipitation from warm-top cloud systems. This study concludes that while V07B exhibits notable advancements, further enhancements are needed to improve accuracy in underperforming regions, specifically those influenced by warm-cloud precipitation systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.