Abstract

The widespread occurrence of breast cancer and its propensity to develop drug resistance highlight the need for a comprehensive understanding of the molecular mechanisms involved. This study investigates the intricate pathways associated with secondary resistance to taxol in triple-negative breast cancer (TNBC) cells, with a particular focus on the changes observed in the cytoplasmic actin isoforms. By studying a taxol-resistant TNBC cell line, we revealed a shift between actin isoforms towards γ-actin predominance, accompanied by increased motility and invasive properties. This was associated with altered tubulin isotype expression and reorganisation of the microtubule system. In addition, we have shown that taxol-resistant TNBC cells underwent epithelial-to-mesenchymal transition (EMT), as evidenced by Twist1-mediated downregulation of E-cadherin expression and increased nuclear translocation of β-catenin. The RNA profiling analysis revealed that taxol-resistant cells exhibited significantly increased positive regulation of cell migration, hormone response, cell-substrate adhesion, and actin filament-based processes compared with naïve TNBC cells. Notably, taxol-resistant cells exhibited a reduced proliferation rate, which was associated with an increased invasiveness in vitro and in vivo, revealing a complex interplay between proliferative and metastatic potential. This study suggests that prolonged exposure to taxol and acquisition of taxol resistance may lead to pro-metastatic changes in the TNBC cell line.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call