Abstract
ABSTRACTNew magnetotelluric (MT) data from two perpendicular profiles in the Kristineberg area, northern Sweden, were analysed and modelled. In the Skellefte Ore District, the Kristineberg volcanic hosted massive sulphide (VHMS) deposit mine is one of the largest and deepest (1250 m). Seventeen broadband magnetotelluric stations were installed along two existing seismic reflection lines. The profiles were 6 and 12 km long with 500 m and 1 km site spacing, respectively. The obtained MT transfer functions in the period range of 0.0015–200 s are of fairly good quality. Detailed strike and dimensionality analysis reveal consistent but period dependent, strike directions, indicating a change in the geoelectrical strike with depth. From the two‐dimensional inversion of the determinant of the impedance tensor, two stable conductivity models with good data fit were obtained. The addition of seismic reflection information from the co‐located survey, improved the data fit of one of them. Extensive sensitivity analyses helped to delineate the well resolved regions of the models and to determine the position of pronounced boundaries. The results are in good agreement with previous studies, especially regarding the presence of a deep conductor interpreted as a structural basement to the district. They also reveal with more detail the configuration of the main geological units of the Skellefte Ore District, especially of the ore bearing volcanic rocks and the embedded alteration zones.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have