Abstract

Many fundamentally important biological phenomena involve the cells to establish and break down the adhesive interactions with the substrate. Here, we report a novel optical method that could directly image the electrochemical impedance of cell-substrate interactions at the single cell level with conventional microscopes and cameras. A thin conductive polymer layer on top of the ITO substrate (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate), PEDOT:PSS) is used as the impedance imaging and sensing layer. A sinusoidal electrochemical potential is applied to the conductive polymer film, and the ion intercalation and transportation in the PEDOT:PSS layer will change the absorption spectrum of the polymer film. The attachment of the cells to the substrate will block and affect the ion doping and dedoping process, and therefore change the color of the polymer film. This process can be captured by any upright or inverted microscope with a simple camera. Utilizing this method, we have successfully imaged the impedance of single-cell attachment, observed the variations of cell-substrate interactions, and measured the impedance changes at different stages of the attachment process. This paper has proposed and successfully demonstrated a new strategy that translates the electrochemical impedance information to an optical signal that could be imaged and used to quantify the local responses. In addition, this method does not need any specially designed optical setup, which may lead to its broad applications in the clinics and biological research laboratories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.