Abstract

Ultra-bright luminescent nanomaterials can be controlled by blended with suitable dopant ions offers a significant strategy to combat the counterfeiters and the reveal latent fingerprints. Herein, we report Pr3+ activated LaOF nanophosphors blended with monovalent alkali metal ions (Na+, K+, Li+) prepared via eco-friendly sonochemical route. The X-ray diffraction profiles confirm the tetragonal crystal system. The photoluminescence emission showed characteristic peaks at ~497, 531, 555, 612, 641, 685, 702 and 734 nm, which corresponds to 3P0→3H4, 3P1→3H5, 3P0→3H5, 3P0→3H6, 3P0→3F2, 3P1→3F3,3P1→3F4 and 3P0→3F4 transitions Pr3+ ions, respectively. A significant luminescent enhancement was achieved in Li+ co-dopant when compared to Na+ and K+. Upon co-doping, color coordinates shifted from orange to pure red region. The latent fingerprint results on various surfaces clearly showed the high resolution images of active or inactive sweat pores with superior sensitivity and selectivity and low background hindrance. A greater possible stochastic process to make unclonable anti-counterfeiting patterns using optimized nanophosphor was designed to reduce counterfeit products. Therefore, we believe that this optimized nanophosphor for visualization of latent fingerprints as well as unclonable anti-counterfeiting tags find widespread use in advanced forensic investigations and product safety applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.