Abstract

Long descending fibers to the spinal cord are essential for locomotion, pain perception, and other behaviors. The fiber termination pattern in the spinal cord of the majority of these fiber systems have not been thoroughly investigated in any species. Serotonergic fibers, which project to the spinal cord, have been studied in rats and opossums on histological sections and their functional significance has been deduced based on their fiber termination pattern in the spinal cord. With the development of CLARITY and CUBIC techniques, it is possible to investigate this fiber system and its distribution in the spinal cord, which is likely to reveal previously unknown features of serotonergic supraspinal pathways. Here, we provide a detailed protocol for imaging the serotonergic fibers in the mouse spinal cord using the combined CLARITY and CUBIC techniques. The method involves perfusion of a mouse with a hydrogel solution and clarification of the tissue with a combination of clearing reagents. Spinal cord tissue was cleared in just under two weeks, and the subsequent immunofluorescent staining against serotonin was completed in less than ten days. With a multi-photon fluorescent microscope, the tissue was scanned and a 3D image was reconstructed using Osirix software.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call