Abstract

The sol-gel polymerization of metal alkoxides or certain multifunctional organic monomers leads to the formation of highly crosslinked, transparent gels. If the solvent is simply evaporated from the pores of these gels, large capillary forces are exerted, and a collapsed structure known as a xerogel is formed. In order to preserve the gel skeleton, it is necessary to remove the the aforementioned solvent under supercritical conditions. The low density, microporous material that results from this operation is known as an aerogel. Aerogels have an ultrafine cell/pore size (< 500 Å), connected porosity, high surface areas (400-1000 m2/g), and an ultrastructure composed of interconnected colloidal-like particles or polymeric chains with characteristic dimensions of 100 Å. This ultrastructure is responsible for the unique optical, thermal, and acoustic properties of aerogels. For example, the ultrafine cell/pore size minimizes light scattering; and thus, aerogels are transparent porous solids. The high porosity of aerogels makes them excellent insulators with their thermal conductivity being approximately 100X lower than that of the fully dense matrix. Finally, the aerogel skeleton is responsible for the low sound velocities observed in these materials (i.e. 100-300 m/sec).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call