Abstract

Observation of resonance modes is the most straightforward way of studying mechanical oscillations because these modes have maximum response to stimuli. However, a deeper understanding of mechanical motion can be obtained by also looking at modal responses at frequencies in between resonances. Here, an imaging of the modal responses for a nanomechanical drum driven off resonance is presented. By using the frequency modal analysis, these shapes are described as a superposition of resonance modes. It is found that the spatial distribution of the oscillating component of the driving force, which is affected by both the shape of the actuating electrode and inherent device properties such as asymmetry and initial slack, greatly influences the modal weight or participation. This modal superposition analysis elucidates the dynamics of any nanomechanical system through modal weights. This aids in optimizing mode‐specific designs for force sensing and integration with other systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.