Abstract

We designed a near-infrared fluorescent substrate-based probe (SBP), termed MG101, for monitoring extracellular cathepsin S (CatS) activity. We conceived a fused peptide hairpin loop-structure, combining a CatS recognition domain, an electrostatic zipper (with complementary charges of a polyanionic (D-Glu)5 segment and a polycationic (D-Arg)5 motif, as well as a N and C terminal Förster resonance energy transfer pair (donor: AlexaFluor680; quencher: BHQ3) to facilitate activity-dependent imaging. MG101 showed excellent stability since no fluorescence release corresponding to a self-dequenching was observed in the presence of either 2 M NaCl or after incubation at a broad range of pH (2.2–8.2). Cathepsins B, D, G, H, and K, neutrophil elastase and proteinase 3 did not cleave MG101, while CatS, and to a lesser extent CatL, hydrolysed MG101 at pH 5.5. However MG101 was fully selective for CatS at pH 7.4 (kcat/Km = 140,000 M−1 s−1) and sensitive to low concentration of CatS (<1 nM). The selectivity of MG101 was successfully endorsed ex vivo, as it was hydrolysed in cell lysates derived from wild-type but not knockout CatS murine spleen. Furthermore, application of the SBP probe with confocal microscopy confirmed the secretion of active CatS from THP-1 macrophages, which could be abrogated by pharmacological CatS inhibitors. Taken together, present data highlight MG101 as a novel near-infrared fluorescent SBP for the visualization of extracellular active CatS from macrophages and other cell types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.