Abstract

Sulfatides, a class of acidic glycosphingolipids, are highly expressed in mammalian myelin and in kidney, where they are thought to stabilize neuronal structures and signaling and to influence osmotic stability of renal cells, respectively. Recently, 9-aminoacridine (9-AA) has been introduced as a negative ion matrix that displays high selectivity for low complexity galactosylceramid-I(3)-sulfate sulfatides and that is suitable for quantitative analysis by matrix-assisted desorption/ionization (MALDI) mass spectrometry (MS). Analyzing acidic fractions of lipid extracts and cryosections from kidneys of wild type and arylsulfatase A-deficient (ASA -/-) mice, we demonstrate that 9-AA also enables sensitive on-target analysis as well as imaging of complex lactosylceramide-II(3)-sulfate and gangliotetraosylceramide-II(3), IV(3) bis-sulfate sulfatides by MALDI-TOF/TOF MS. Utilizing the MALDI imaging MS technique, we show differential localization in mouse kidney of (1) sulfatides with identical ceramide anchors, but different glycan-sulfate head groups but also of (2) sulfatides with identical head groups but with different acyl- or sphingoid base moieties. A comparison of MALDI images of renal sulfatides from control and sulfatide storing arylsulfatase A-deficient (ASA -/-) mice revealed relative expression differences, very likely reflecting differences in sulfatide turnover of the various renal cell types. These results establish MALDI imaging MS with 9-AA matrix as a label-free method for spatially resolved ex vivo investigation of the relative turnover of sulfatides in animal models of human glycosphingolipid storage disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.