Abstract
We investigated the capacity of sodium/iodide symporter (NIS) positron emission tomography (PET) to image and quantitate early engraftment and survival of cancer stem cells (CSCs) in living mice. CT26 colon cancer cells and CSCs were infected with an adenovirus expressing both NIS and enhanced green fluorescent protein (EGFP). Cells were implanted into normal and ischemic hindlimbs of mice, and serial optical and I-124 PET imaging was performed. Extracted tissues underwent I-124 measurements and confocal microscopy. NIS.EGFP gene transfer increased fluorescence and I-124 uptake of CSCs and CT26 cells without adverse effects. I-124 PET clearly visualized implanted tumor cells in vivo, whereas optical imaging was suboptimal. PET revealed 1.95, 2.22, and 1.93-fold greater I-124 uptake by CSC inoculation into ischemic compared to non-ischemic limbs at 2, 15, and 24h, respectively. CT26 cells showed similar but smaller differences. PET findings were confirmed by ex vivo measurements and confocal microscopy. NIS PET can help identify microenvironment conditions that influence early survival of implanted CSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.