Abstract
We describe a technique that uses spatially modulated near-infrared (NIR) illumination to detect and map changes in both optical properties (absorption and reduced scattering parameters) and tissue composition (oxy- and deoxyhemoglobin, total hemoglobin, and oxygen saturation) during acute ischemic injury in the rat barrel cortex. Cerebral ischemia is induced using an open vascular occlusion technique of the middle cerebral artery (MCA). Diffuse reflected NIR light (680 to 980 nm) from the left parietal somatosensory cortex is detected by a CCD camera before and after MCA occlusion. Monte Carlo simulations are used to analyze the spatial frequency dependence of the reflected light to predict spatiotemporal changes in the distribution of tissue absorption and scattering properties in the brain. Experimental results from seven rats show a 17+/-4.7% increase in tissue concentration of deoxyhemoglobin and a 45+/-3.1, 23+/-5.4, and 21+/-2.2% decrease in oxyhemoglobin, total hemoglobin concentration and cerebral tissue oxygen saturation levels, respectively, 45 min following induction of cerebral ischemia. An ischemic index (I(isch)=ctHHbctO(2)Hb) reveals an average of more then twofold contrast after MCAo. The wavelength-dependence of the reduced scattering (i.e., scatter power) decreased by 35+/-10.3% after MCA occlusion. Compared to conventional CCD-based intrinsic signal optical imaging (ISOI), the use of structured illumination and model-based analysis allows for generation of separate maps of light absorption and scattering properties as well as tissue hemoglobin concentration. This potentially provides a powerful approach for quantitative monitoring and imaging of neurophysiology and metabolism with high spatiotemporal resolution.
Highlights
Stroke occurs when arteries supplying blood to the brain burst or are obstructed[1]
Since the most commonly involved artery in ischemic strokes is the middle cerebral artery (MCA) we chose to focus our experiments on MCA occlusion[4, 5] (MCAo)
The region of the left parietal somatosensory barrel cortex centered at the whisker C2 functional representation location was monitored pre- and post-MCA occlusion
Summary
Stroke occurs when arteries supplying blood to the brain burst (hemorrhagic stroke) or are obstructed[1] (ischemic stroke). About 90% of all strokes are ischemic, occurring from occlusion of one of the main arteries supplying the brain. Under these conditions brain cells undergo a series of pathophysiologic changes, but die from lack of oxygen supply.[2] Cerebral ischemia results in changes in regional concentrations of oxyhemoglobin, deoxyhemoglobin, and water.[3] Because these molecules absorb specific wavelengths of light, ischemia alters the optical properties of brain tissue. Since the most commonly involved artery in ischemic strokes is the middle cerebral artery (MCA) we chose to focus our experiments on MCA occlusion[4, 5] (MCAo)
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have