Abstract

In this paper, we present the initial experimental investigation of a two-coil receive/transmit design for small animals imaging at 7T MRI. The system uses a butterfly-type coil tuned to 300 MHz for scanning the 1H nuclei and a non-resonant loop antenna with a metamaterial-inspired resonator with the ability to tune over a wide frequency range for X-nuclei. 1H, 31P, 23Na and 13C, which are of particular interest in biomedical MRI, were selected as test nuclei in this work. Coil simulations show the two parts of the radiofrequency (RF) assembly to be decoupled and operating independently due to the orthogonality of the excited RF transverse magnetic fields. Simulations and phantom experimental imaging show sufficiently homogeneous transverse transmit RF fields and tuning capabilities for the pilot multiheteronuclear experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.