Abstract

Recent studies have shown that the performance of single-image super-resolution methods can be significantly boosted by using deep convolutional neural networks. In this study, we present a novel single-image super-resolution method by introducing dense skip connections in a very deep network. In the proposed network, the feature maps of each layer are propagated into all subsequent layers, providing an effective way to combine the low-level features and high-level features to boost the reconstruction performance. In addition, the dense skip connections in the network enable short paths to be built directly from the output to each layer, alleviating the vanishing-gradient problem of very deep networks. Moreover, deconvolution layers are integrated into the network to learn the upsampling filters and to speedup the reconstruction process. Further, the proposed method substantially reduces the number of parameters, enhancing the computational efficiency. We evaluate the proposed method using images from four benchmark datasets and set a new state of the art.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.