Abstract

Recently, the performance of single image super-resolution (SISR) methods have been significantly improved with the development of the convolutional neural networks (CNN). In this paper, we propose a very deep dense convolutional network (SRDCN) for image super-resolution. Due to the dense connection, the feature maps of each preceding layer are connected and used as inputs of all subsequent layers, thus utilizing both low-level and high-level features. In addition, residual learning and dense skip connection are adopted to ease the difficulties of training very deep convolutional networks by alleviating the vanishing-gradient problem. Experimental results on four benchmark datasets demonstrate that our proposed method achieves comparable performance with other state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.