Abstract

This study aims to improve the efficiency and accuracy of image segmentation, and to compare and study traditional threshold-based image segmentation methods and machine learning model-based image segmentation methods. The krill herb optimization algorithm is combined with the traditional maximum between-class variance function to form a new graph segmentation algorithm. The pet dataset is used to train the algorithm model and build an image semantic segmentation system. The results show that when the traditional Ostu algorithm performs image single-threshold segmentation, the number of iterations is about 256. When double-threshold segmentation is performed, the number of iterations increases exponentially, and the execution time is about 2 s. The number of iterations of the improved Krill Herd algorithm in single-threshold segmentation is 6.95 times, respectively. The execution time for double-threshold segmentation is about 0.24 s. The number of iterations is only improved by a factor of 0.19. The average classification accuracy of the Unet network model and the SegNet network model is 86.3% and 91.9%, respectively. The average classification accuracy of the DC-Unet network model reaches 93.1%. This shows that the proposed fusion algorithm has high optimization efficiency and stronger practicability in multithreshold image segmentation. The DC-Unet network model can improve the image detail segmentation effect. The research provides a new idea for finding an efficient and accurate image segmentation method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.