Abstract
Image segmentation is a classical problem in computer vision and has been widely used in many fields. Due to the uncertainty in images, it is difficult to obtain a precise segmentation result. To deal with the problem of uncertainty encountered in the image segmentation, an evidential Markov random field (EMRF) model is designed, based on which a novel image segmentation algorithm is proposed in this paper. The credal partition based on the evidence theory is used to define the label field. The iterated conditional modes (ICM) algorithm is used for the optimization in EMRF. Experimental results show that our proposed algorithm can provide a better segmentation result against the traditional MRF, the Fuzzy MRF (FMRF) and the traditonal evidential approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.