Abstract

Standard gaussian mixture modeling (GMM) is a well-known method for image segmentation. However, the pixels themselves are considered independent of each other, making the segmentation result sensitive to noise. To reduce the sensitivity of the segmented result with respect to noise, Markov random field (MRF) models provide a powerful way to account for spatial dependences between image pixels. However, their main drawback is that they are computationally expensive to implement, and require large numbers of parameters. Based on these considerations, we propose an extension of the standard GMM for image segmentation, which utilizes a novel approach to incorporate the spatial relationships between neighboring pixels into the standard GMM. The proposed model is easy to implement and compared with MRF models, requires lesser number of parameters. We also propose a new method to estimate the model parameters in order to minimize the higher bound on the data negative log-likelihood, based on the gradient method. Experimental results obtained on noisy synthetic and real world grayscale images demonstrate the robustness, accuracy and effectiveness of the proposed model in image segmentation, as compared to other methods based on standard GMM and MRF models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.