Abstract

A modified Hopfield neural network model for regularized image restoration is presented. The proposed network allows negative autoconnections for each neuron. A set of algorithms using the proposed neural network model is presented, with various updating modes: sequential updates; n-simultaneous updates; and partially asynchronous updates. The sequential algorithm is shown to converge to a local minimum of the energy function after a finite number of iterations. Since an algorithm which updates all n neurons simultaneously is not guaranteed to converge, a modified algorithm is presented, which is called a greedy algorithm. Although the greedy algorithm is not guaranteed to converge to a local minimum, the l (1) norm of the residual at a fixed point is bounded. A partially asynchronous algorithm is presented, which allows a neuron to have a bounded time delay to communicate with other neurons. Such an algorithm can eliminate the synchronization overhead of synchronous algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.