Abstract
A modified Hopfield network model for parallel and distributed image restoration is presented. The proposed network does not require the zero autoconnection assumption which is one of the major drawbacks of the original Hopfield network. A new number representation scheme is also given for implementation of the network. As a tool for the convergence analysis of parallel and distributed algorithms, the convergence of descent algorithms theorem is presented. According to this theorem, the proposed image restoration algorithm with sequential updates and decoupled parallel updates is shown to converge. The sufficient condition for convergence of n-simultaneous updates is also given. If this condition is satisfied, the algorithm with totally asynchronous updates is guaranteed to converge. When the image restoration problem does not satisfy the convergence condition, a greedy algorithm is used which guarantees convergence at the expense of image quality. The proposed algorithm with sequential updates performs identically to the algorithm using the original Hopfield network, without checking the reduction of the energy function at the update of each neuron.© (1990) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.