Abstract

The image resolution in bright-field (BF) and dark-field (DF) conventional transmission electron microscopy (TEM) is given by: r = 0.66 CS¼¾¾, where Csand ¾ are the spherical aberration coefficient of the objective lens and electron wavelength, respectively. Based on this formula, it should be possible to resolve single atoms or clusters of atoms by phase contrast imaging with a highly coherent electron beam and a properly defocused objective lens; this has been demonstrated for both BF and DF imaging. However, for most situations encountered in conventional TEM, the type of information that can be obtained about the specimen is the most important, rather than the instrumental resolution. Atomicresolution microscopy of crystalline specimens relies on phase contrast produced when two or more beams interfere to form an image and this is discussed elsewhere in this symposium. This paper discusses the contrast and resolution when either a single beam or diffuse scattering is used to form an image.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call