Abstract

It is generally a challenging task to reconstruct dynamic magnetic resonance (MR) images with high spatial and high temporal resolutions, especially with highly incomplete k-space sampling. In this work, a novel method that combines a non-rigid image registration technique with sparsity-constrained image reconstruction is introduced. Employing a multi-resolution free-form deformation technique with B-spline interpolations, the non-rigid image registration accurately models the complex deformations of the physiological dynamics, and provides artifact-suppressed high spatial-resolution predictions. Based on these prediction images, the sparsity-constrained data fidelity-enforced image reconstruction further improves the reconstruction accuracy. When compared with the k-t FOCUSS with motion estimation/motion compensation (MEMC) technique on volunteer scans, the proposed method consistently outperforms in both the spatial and the temporal accuracy with variously accelerated k-space sampling. High fidelity reconstructions for dynamic systolic phases with reduction factor of 10 and cardiac perfusion series with reduction factor of 3 are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.