Abstract

Skylight polarization, inspired by the foraging behavior of insects, has been widely used for navigation for various platforms, such as robots, unmanned aerial vehicles, and others, owing to its stability and non-error-accumulation. Among the characteristics of skylight-polarized patterns, the angle of polarization (AOP) and the degree of polarization (DOP) are two of the most significant characteristics that provide abundant information regarding the position of the sun. In this study, we propose an accurate method for detecting the solar meridian for real-time bioinspired navigation through image registration. This method uses the AOP pattern to detect the solar meridian and eliminates the ambiguity between anti-solar meridian and solar meridian using the DOP pattern, resulting in an accurate heading of the observer. Simulation experiments demonstrated the superior performance of the proposed method compared to the alternative approaches. Field experiments demonstrate that the proposed method achieves real-time, robust, and accurate performance under different weather conditions with a root mean square error of 0.1° under a clear sky, 0.18° under an overcast sky with a thin layer of clouds, and 0.32° under an isolated thick cloud cover. Our findings suggest that the proposed method can be potentially used in skylight polarization for real-time and accurate navigation in GPS-denied environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.