Abstract

BackgroundModel-based iterative reconstruction (MBIR) is a promising reconstruction method which could improve CT image quality with low radiation dose. The purpose of this study was to demonstrate the advantage of using MBIR for noise reduction and image quality improvement in low dose chest CT for children with necrotizing pneumonia, over the adaptive statistical iterative reconstruction (ASIR) and conventional filtered back-projection (FBP) technique.MethodsTwenty-six children with necrotizing pneumonia (aged 2 months to 11 years) who underwent standard of care low dose CT scans were included. Thinner-slice (0.625 mm) images were retrospectively reconstructed using MBIR, ASIR and conventional FBP techniques. Image noise and signal-to-noise ratio (SNR) for these thin-slice images were measured and statistically analyzed using ANOVA. Two radiologists independently analyzed the image quality for detecting necrotic lesions, and results were compared using a Friedman’s test.ResultsRadiation dose for the overall patient population was 0.59 mSv. There was a significant improvement in the high-density and low-contrast resolution of the MBIR reconstruction resulting in more detection and better identification of necrotic lesions (38 lesions in 0.625 mm MBIR images vs. 29 lesions in 0.625 mm FBP images). The subjective display scores (mean ± standard deviation) for the detection of necrotic lesions were 5.0 ± 0.0, 2.8 ± 0.4 and 2.5 ± 0.5 with MBIR, ASIR and FBP reconstruction, respectively, and the respective objective image noise was 13.9 ± 4.0HU, 24.9 ± 6.6HU and 33.8 ± 8.7HU. The image noise decreased by 58.9 and 26.3% in MBIR images as compared to FBP and ASIR images. Additionally, the SNR of MBIR images was significantly higher than FBP images and ASIR images.ConclusionsThe quality of chest CT images obtained by MBIR in children with necrotizing pneumonia was significantly improved by the MBIR technique as compared to the ASIR and FBP reconstruction, to provide a more confident and accurate diagnosis for necrotizing pneumonia.

Highlights

  • Model-based iterative reconstruction (MBIR) is a promising reconstruction method which could improve Computed tomography (CT) image quality with low radiation dose

  • The CT dose index (CTDIvol), dose length product (DLP), and overall radiation dose for the present study was 1.14 ± 0.56 mGy, 26.96 ± 9.86 mGy.cm, and 0.59 ± 0.19 mSv, respectively

  • In the 0.625 mm MBIR images, 38 necrotic lesions were found in the same lobes; 3 necrotic lesions were missed in the 0.625 mm adaptive statistical iterative reconstruction (ASIR) images, and only necrotic lesions could be certain in the 0.625 mm filtered back-projection (FBP) images due to high image noise

Read more

Summary

Introduction

Model-based iterative reconstruction (MBIR) is a promising reconstruction method which could improve CT image quality with low radiation dose. Noise model-based iterative reconstruction, such as adaptive statistical iterative reconstruction (ASIR), iDose and Sinogram affirmed iterative reconstruction (SAFIRE) [1,2,3,4,5], is a new type of CT reconstruction algorithm using statistical models to reduce image noise and produce better image quality [6, 7]. These new iterative reconstruction techniques have been applied in clinical practice and have demonstrated the ability to provide clinically acceptable images for diagnosis with significantly reduced radiation dosage by 32–65% [7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call