Abstract

ObjectivesRheumatoid arthritis (RA) is a severe and common autoimmune disease. Conventional diagnostic methods are often subjective, error-prone, and repetitive works. There is an urgent need for a method to detect RA accurately. Therefore, this study aims to develop an automatic diagnostic system based on deep learning for recognizing and staging RA from radiographs to assist physicians in diagnosing RA quickly and accurately.MethodsWe develop a CNN-based fully automated RA diagnostic model, exploring five popular CNN architectures on two clinical applications. The model is trained on a radiograph dataset containing 240 hand radiographs, of which 39 are normal and 201 are RA with five stages. For evaluation, we use 104 hand radiographs, of which 13 are normal and 91 RA with five stages.ResultsThe CNN model achieves good performance in RA diagnosis based on hand radiographs. For the RA recognition, all models achieve an AUC above 90% with a sensitivity over 98%. In particular, the AUC of the GoogLeNet-based model is 97.80%, and the sensitivity is 100.0%. For the RA staging, all models achieve over 77% AUC with a sensitivity over 80%. Specifically, the VGG16-based model achieves 83.36% AUC with 92.67% sensitivity.ConclusionThe presented GoogLeNet-based model and VGG16-based model have the best AUC and sensitivity for RA recognition and staging, respectively. The experimental results demonstrate the feasibility and applicability of CNN in radiograph-based RA diagnosis. Therefore, this model has important clinical significance, especially for resource-limited areas and inexperienced physicians.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.