Abstract
The development of objective image quality assessment (IQA) metrics aligned with human perception is of fundamental importance to numerous image-processing applications. Recently, human visual system (HVS)-based engineering algorithms have received widespread attention for their low computational complexity and good performance. In this paper, we propose a new IQA model by incorporating these available engineering principles. A local singular value decomposition (SVD) is first utilised as a structural projection tool to select local image distortion features, and then, both perceptual spatial pooling and neural networks (NN) are employed to combine feature vectors to predict a single perceptual quality score. Extensive experiments and cross-validations conducted with three publicly available IQA databases demonstrate the accuracy, consistency, robustness, and stability of the proposed approach compared to state-of-the-art IQA methods, such as Visual Information Fidelity (VIF), Visual Signal to Noise Ratio (VSNR), and Structural Similarity Index (SSIM).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have