Abstract

Self-assembled block copolymer patterns may render more robust masks for plasma etch transfer through block-selective infiltration with metal oxides, affording opportunities for improved high contrast, high fidelity pattern transfer for sub-15 nm lithography in wafer-scale processes. However, block selective infiltration alters the self-assembled block copolymer latent image by changing feature size, duty cycle, and sidewall profile. The authors systematically investigate the effects of aluminum oxide infiltration of 27 and 41 nm pitch line/space patterns formed using polystyrene-b-poly(methyl methacrylate) block copolymers and evaluate the process compatibility with directed self assembly. The degree of image distortion depends on the amount of infiltrated material, with smaller amounts resulting in complete mask hardening and larger amounts shifting and collapsing pattern features. An attractive feature of the resulting oxide mask is the relatively smooth line edge roughness of the final transferred features into Si with a 3σ = 2.9 nm line edge roughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.