Abstract

In order to obtain more robust face recognition results, the paper proposes an image preprocessing method based on local approximation gradient (LAG). The traditional gradient is only calculated along 0° and 90°; however, there exist many other directional gradients in an image block. To consider more directional gradients, we introduce a novel LAG operator. The LAG operator is actually calculated by integrating more directional gradients. Because of considering more directional gradients, LAG captures more edge information for each pixel of an image and finally generates an LAG image, which achieves a more robust image dissimilarity between images. An LAG image is normalized into an augmented feature vector using the "z-score" method. The dimensionality of the augmented feature vector is reduced by linear discriminant analysis to yield a low-dimensional feature vector. Experimental results show that the proposed method achieves more robust results in comparison with state-of-the-art methods in AR, Extended Yale B and CMU PIE face database.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.