Abstract
This paper presents a robust but simple image feature representation method, called image decomposition based on Euler mapping (IDEM). IDEM firstly captures the orientation information by implementing arctangent operator for each pixel. Then, the orientation image is decomposed into two mapping images by executing Euler mapping. Each mapping image is normalized using the “z-score” method, and all normalized vectors are concatenated into an augmented feature vector. The dimensionality of the augmented feature vector is reduced by linear discriminant analysis to yield a low-dimensional feature vector. Experimental results show that IDEM achieves better results in comparison with state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.