Abstract
Pressure-sensitive luminescent coating on porous anodized aluminium (AA-PSP) was applied to measure non-periodic unsteady pressure distribution on a wind-tunnel model. A high-speed digital video camera was used to capture the PSP signal. The pressure-sensitive dye was tris(4,7-diphenylphenanthroline) ruthenium(II) ([Ru(dpp)3]2+). The coating has a short response time of O(10 µs), although it exhibits temperature and humidity sensitivities. A hydrophobic coating was applied on the anodized aluminium surface to suppress the humidity sensitivity. A temperature sensitive paint was used to obtain the temperature distribution instantaneously with the pressure. The temperature data were used to correct the PSP response. An appropriate data acquisition procedure as well as digital image processing algorithm was established to compensate for the error from the temperature and humidity sensitivities. The present system was applied to measure the pressure distribution on a delta wing at a high angle of attack in transonic flow, whose flow is unsteady due to the interaction between shock waves and leading edge vortices. The non-periodic unsteady pressure distribution on the delta wing was successfully measured with the sampling rate of 1 kHz and within a few per cent error in absolute pressure level.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have