Abstract

Advancements in deep learning techniques have proved useful in biomedical image segmentation. However, the large amount of unlabeled data inherent in biomedical imagery, particularly in digital pathology, creates a semi-supervised learning paradigm. Specifically, because of the time consuming nature of producing pixel-wise annotations and the high cost of having a pathologist dedicate time to labeling, there is a large amount of unlabeled data that we wish to utilize in training segmentation algorithms. Pseudo-labeling is one method to leverage the unlabeled data to increase overall model performance. We adapt a method used for image classification pseudo-labeling to select images for segmentation pseudo-labeling and apply it to 3 digital pathology datasets. To select images for pseudo-labeling, we create and explore different thresholds for confidence and uncertainty on an image level basis. Furthermore, we study the relationship between image-level uncertainty and confidence with model performance. We find that the certainty metrics do not consistently correlate with performance intuitively, and abnormal correlations serve as an indicator of a model's ability to produce pseudo-labels that are useful in training. Clinical relevance - The proposed approach adapts image-level confidence and uncertainty measures for segmentation pseudo-labeling on digital pathology datasets. Increased model performance enables better disease quantification for histopathology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.