Abstract

A considerable number of patients with subarachnoid hemorrhage (SAH) develop vasospasms of the infratentorial arteries. Transcranial Doppler sonography (TCD) is used to screen for vasospasm. In this study, we used a technical modification that combines TCD with an image guidance device that the operator can use to navigate to the ultrasonic window and to predefined intracranial vascular targets. Our aim was to analyze the feasibility, spatial precision, and spatial reproducibility of serial image-guided TCD of infratentorial and-for comparison-supratentorial arteries in the clinical setting of monitoring for vasospasm after SAH. The study included 10 SAH patients, who each received 5 serial image-guided TCD examinations. Using computed tomography angiography data, trajectories to the infratentorial and supratentorial cerebral arteries were planned and loaded into an image guidance device tracking the Doppler probe. As a measure of spatial precision and spatial reproducibility, we analyzed the distances between the positions of preplanned vascular targets and optimal Doppler signals. The mean distance between preplanned and optimal target points was 4.8 ± 2.1 mm (first exam), indicating high spatial precision. The spatial precision decreased with increasing depth of the vascular target. In all patients, image-guided TCD detected all predefined supratentorial and infratentorial vascular segments. There were no significant changes in spatial precision in serial exams, indicating high reproducibility. Image-guided TCD is feasible for supratentorial and infratentorial arteries. It shows high spatial precision and reproducibility. This study provides a basis for future clinical studies on image-guided TCD for post-SAH vasospasm screening.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.