Abstract

In this paper, image fusion method based on a new class of wavelet — non-separable wavelet with compactly supported, linear phase, orthogonal and dilation matrix [Formula: see text] is presented. We first construct a non-separable wavelet filter bank. Using these filters, the images involved are decomposed into wavelet pyramids. Then the following fusion algorithm was proposed: for low-frequency part, the average value is selected for new pixel value, For the three high-frequency parts of each level, the standard deviation of each image patch over 3×3 window in the high-frequency sub-images is computed as activity measurement. If the standard deviation of the area 3×3 window is bigger than the standard deviation of the corresponding 3×3 window in the other high-frequency sub-image. The center pixel values of the area window that the weighted area energy is bigger are selected. Otherwise the weighted value of the pixel is computed. Then a new fused image is reconstructed. The performance of the method is evaluated using the entropy, cross-entropy, fusion symmetry, root mean square error and peak-to-peak signal-to-noise ratio. The experiment results show that the non-separable wavelet fusion method proposed in this paper is very close to the performance of the Haar separable wavelet fusion method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call