Abstract

Theoretical analysis of the spatial, noise, and energy characteristics of an amplifier has been performed in the mode of spectral and time selection using subnanosecond stimulated Raman Scattering gain of weak echo signals in crystalline active media that are known for high (up to 10–1 cm/MW) gain coefficients. The possibility to reach high gain values has been demonstrated for weak signals from objects at acceptable angular sizes of the field of vision of an amplifier. To provide a signal-to-noise ratio that exceeds unity over the entire field of vision, the number of photons at the input to an amplifier that is required has to exceed the number of its resolution elements. Accurate determination of the possibilities of recording of weak echo signals and quality of images of targets that are obtained using amplifiers under stimulated Raman Scattering requires additional special experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.