Abstract

The comparative values of the peak and integral cross sections of spontaneous Raman scattering and the optical dephasing time of molecular vibrations were determined for several oxide crystals by spontaneous Raman spectroscopy. The spectral, time, and energy parameters of stimulated Raman scattering (SRS) were measured for ten crystals using picosecond YLF: Nd laser pumping with a radiation wavelength of 1047 nm. An analysis of the experimental dependence of the threshold energy of pumping SRS on the integral and peak cross sections of spontaneous Raman scattering showed that the SRS gain increment explicitly depended on the integral cross section and was independent of the peak cross section of spontaneous Raman scattering as the ratio between the pumping pulse width (11 ps) and the time of optical dephasing of molecular vibrations changed from 0.42 to 9.3. The gain coefficients of steady-state stimulated Raman scattering under threshold stimulated Raman scattering conditions were determined for all the crystals studied on the basis of the measured threshold SRS pumping energies, the duration and width of the spectrum of pulses, the nonlinear interaction length, the intensity of pumping, and the theoretical dependences that relate the steady-state and transient SRS gain increments. The steady-state SRS gain coefficients obtained in this work fitted well a linear dependence on the peak cross sections of spontaneous Raman scattering, which substantiated the correctness of our analysis and measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call