Abstract

In this paper, we propose an improved optical security system using three phase-encoded images and the principle of interference. This optical system based on a Mach-Zehnder interferometer consists of one phase-encoded virtual image to be encrypted and two phase-encoded images, en-crypting image and decrypting image, where every pixel in the three images has a phase value of '0'and' $\pi$ '. The proposed encryption is performed by the multiplication of an encrypting image and a phase-encoded virtual image which dose not contain any information from the decrypted im-age. Therefore, even if the unauthorized users steal and analyze the encrypted image, they cannot reconstruct the required image. This virtual image protects the original image from counterfeiting and unauthorized access. The decryption of the original image is simply performed by interfering between a reference wave and a direct pixel-to-pixel mapping image of the en crypted image with a decrypting image. Computer simulations confirmed the effectiveness of the proposed optical technique for optical security applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.