Abstract

PurposeA core challenge in background subtraction (BGS) is handling videos with sudden illumination changes in consecutive frames. In our pilot study published in, Sakkos:SKIMA 2019, we tackle the problem from a data point-of-view using data augmentation. Our method performs data augmentation that not only creates endless data on the fly but also features semantic transformations of illumination which enhance the generalisation of the model.Design/methodology/approachIn our pilot study published in SKIMA 2019, the proposed framework successfully simulates flashes and shadows by applying the Euclidean distance transform over a binary mask generated randomly. In this paper, we further enhance the data augmentation framework by proposing new variations in image appearance both locally and globally.FindingsExperimental results demonstrate the contribution of the synthetics in the ability of the models to perform BGS even when significant illumination changes take place.Originality/valueSuch data augmentation allows us to effectively train an illumination-invariant deep learning model for BGS. We further propose a post-processing method that removes noise from the output binary map of segmentation, resulting in a cleaner, more accurate segmentation map that can generalise to multiple scenes of different conditions. We show that it is possible to train deep learning models even with very limited training samples. The source code of the project is made publicly available at https://github.com/dksakkos/illumination_augmentation

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.