Abstract
Because of the retina's role in refractive development, this study was conducted to analyze the retinal transcriptome in chicks wearing a spectacle lens, a well-established means of inducing refractive errors, to identify gene expression alterations and to develop novel mechanistic hypotheses about refractive development. One-week-old white Leghorn chicks wore a unilateral spectacle lens of +15 or -15 D for 6 hours or 3 days. With total RNA from the retina/(retinal pigment epithelium, RPE), chicken gene microarrays were used to compare gene expression levels between lens-wearing and contralateral control eyes (n = 6 chicks for each condition). Normalized microarray signal intensities were evaluated by analysis of variance, using a false discovery rate of <10% as the statistical criterion. Selected differentially expressed genes were validated by qPCR. Very few retina/RPE transcripts were differentially expressed after plus lens wear. In contrast, approximately 1300 transcripts were differentially expressed under each of the minus lens conditions, with minimal overlap. For each condition, low fold-changes typified the altered transcriptome. Differentially regulated genes under the minus lens conditions included many potentially informative signaling molecules and genes whose protein products have roles in intrinsic retinal circadian rhythms. Plus or minus lens wear induce markedly different, not opposite, alterations in retina/RPE gene expression. The initial retinal responses to defocus are quite different from those when the eye growth patterns are well established, suggesting that different mechanisms govern the initiation and persistence or progression of refractive errors. The gene lists identify promising signaling candidates and regulatory pathways for future study, including a potential role for circadian rhythms in refractive development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.