Abstract
Purpose Wavelength signals play a vital role in refractive development. This study aimed to explore the retinal transcriptome signature in these processes. Methods Guinea pigs were randomly divided into three groups exposed to white, blue, or green environmental light for eight weeks. Refraction and axial length were evaluated every 4 weeks, and the retinal transcriptome was profiled at 8 weeks. Results Compared with the white group, ocular refraction significantly decreased and ocular axial length significantly extended in the green group whereas these parameters showed opposite trends in the blue group. RNA-sequencing showed that, compared with the white group, 184 and 171 differentially expressed genes (DEGs) were found in the blue and green groups, respectively. Among these DEGs, only 31 overlapped. These two sets of DEGs were enriched in distinct biological processes and pathways. There were 268 DEGs between the blue and green groups, which were primarily enriched in the extracellular matrix, and metabolism, receptor activity, and ion binding processes. In addition, nine human genes, including ECEL1, CHRND, SHBG, PRSS56, OVOL1, RDH5, WNT7B, PEBP4, CA12, were identified to be related to myopia development and wavelength response, indicating the potential role of these genes in human wavelength-induced myopia. Conclusions In this study, we identified retinal targets and pathways involved in the response to wavelength signals in emmetropization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.