Abstract
Optical approaches have made great strides enabling high-speed, scalable computing necessary for modern deep learning and AI applications. In this study, we introduce a multilayer optoelectronic computing framework that alternates between optical and optoelectronic layers to implement matrix-vector multiplications and rectified linear functions, respectively. The system is designed to be real-time and parallelized, utilizing arrays of light emitters and detectors connected with independent analog electronics. We experimentally demonstrate the operation of our system and compare its performance to a single-layer analog through simulations.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.